Note: Answer all questions from Part – A. Answer any five questions from Part – B.

PART – A (25 Marks)
1. What is Moore’s law? 2
2. Explain the operation of transmission gate logic? Give its truth table. 2
3. Draw the physical structure of a nMOSFET and indicate all the layers. 2
4. What is latch up? How do you prevent latch up problem in CMOS logic? 3
5. What is lambda? Give some (λ) based design rules? 2
6. Define rise time, fall time and delay time. 3
7. Draw Pseudo nMOS logic block diagram. What are the advantages and disadvantages of this logic. 2
8. Explain about NOR based ROM cell. 3
9. Write verilog model for the half adder. 3
10. Draw full adder using half adder only. 3

PART – B (5×10=50 Marks)
11. a) Design a NAND 3 gate using an 8 × 1 mux. 5
 b) Construct the CMOS logic gate for the function \(F = \overline{x(y+z)} + y \). 5
12. a) An interconnect line is made from a material that has a resistivity of \(\rho = 4 \mu \Omega \cdot \text{cm} \). The interconnect is 1200 Å thick. The line has a width of 0.6 μm.
 i) Calculate the sheet resistance \(R_s \) of the line. 5
 ii) Find the line resistance for a line of 125 μm long. 5
 b) Draw the layout of two input NAND gate also draw the stick diagram. 5
13. Explain the CMOS process flow diagrams. 10
14. a) Draw and explain the CMOS inverter DC characteristics. 5
 b) Explain dynamic CMOS logic circuit and what is precharge and evaluation charge sharing. 5
15. a) Explain the operation of SRAM cell and DRAM cell. 5
 b) Compare SRAM with DRAM. 5
16. a) Discuss about multiple Rung ladder circuit. How to model the RC interconnect to measure the delay. 5
 b) Explain about carry look ahead adder and multipliers with help of an example and circuit setup. 5
17. a) What is meant by floor planning and routing explain? 5
 b) Implement 8 × 1 mux using 2 × 1 mux use TG logic. 5